Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 490
Filtrar
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 313: 124120, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38479228

RESUMO

Ferrochelatases catalyze the insertion of ferrous iron into the porphyrin during the heme b biosynthesis pathway, which is fundamental for both prokaryotes and eukaryotes. Interestingly, in the active site of ferrochelatases, the proximal ligand coordinating the porphyrin iron of the product is not conserved, and its catalytic role is still unclear. Here we compare the L. monocytogenes bacterial coproporphyrin ferrochelatase native enzyme together with selected variants, where the proximal Tyr residue was replaced by a His (i.e. the most common ligand in heme proteins), a Met or a Phe (as in human and actinobacterial ferrochelatases, respectively), in their Fe(III), Fe(II) and Fe(II)-CO adduct forms. The study of the active site structure and the activity of the proteins in solution has been performed by UV-vis electronic absorption and resonance Raman spectroscopies, biochemical characterization, and classical MD simulations. All the mutations alter the H-bond interactions between the iron porphyrin propionate groups and the protein, and induce effects on the activity, depending on the polarity of the proximal ligand. The overall results confirm that the weak or non-existing coordination of the porphyrin iron by the proximal residue is essential for the binding of the substrate and the release of the final product.


Assuntos
Ferroquelatase , Porfirinas , Humanos , Domínio Catalítico , Ferroquelatase/química , Ferroquelatase/metabolismo , Compostos Férricos , Ligantes , Porfirinas/química , Ferro/química , Compostos Ferrosos/metabolismo
2.
ACS Synth Biol ; 12(12): 3669-3679, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37963151

RESUMO

Exchanging the native iron of heme for other metals yields artificial metalloproteins with new properties for spectroscopic studies and biocatalysis. Recently, we reported a method for the biosynthesis and incorporation of a non-natural metallocofactor, cobalt protoporphyrin IX (CoPPIX), into hemoproteins using the common laboratory strain Escherichia coli BL21(DE3). This discovery inspired us to explore the determinants of metal specificity for metallocofactor biosynthesis in E. coli. Herein, we report detailed kinetic analysis of the ferrochelatase responsible for metal insertion, EcHemH (E. coli ferrochelatase). This enzyme exhibits a small, less than 2-fold preference for Fe2+ over the non-native Co2+ substrate in vitro. To test how mutations impact EcHemH, we used a surrogate metal specificity screen to identify variants with altered metal insertion preferences. This engineering process led to a variant with an ∼30-fold shift in specificity toward Co2+. When assayed in vivo, however, the impact of this mutation is small compared to the effects of alteration of the external metal concentrations. These data suggest that incorporation of cobalt into PPIX is enabled by the native promiscuity of EcHemH coupled with BL21's impaired ability to maintain transition-metal homeostasis. With this knowledge, we generated a method for CoPPIX production in rich media, which yields cobalt-substituted hemoproteins with >95% cofactor purity and yields comparable to standard expression protocols for the analogous native hemoproteins.


Assuntos
Cobalto , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Ferroquelatase/química , Ferroquelatase/genética , Ferroquelatase/metabolismo , Cinética , Metais/química
3.
Protein Sci ; 32(11): e4788, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37743577

RESUMO

Understanding the reaction mechanism of enzymes at the molecular level is generally a difficult task, since many parameters affect the turnover. Often, due to high reactivity and formation of transient species or intermediates, detailed information on enzymatic catalysis is obtained by means of model substrates. Whenever possible, it is essential to confirm a reaction mechanism based on substrate analogues or model systems by using the physiological substrates. Here we disclose the ferrous iron incorporation mechanism, in solution, and in crystallo, by the coproporphyrin III-coproporphyrin ferrochelatase complex from the firmicute, pathogen, and antibiotic resistant, Listeria monocytogenes. Coproporphyrin ferrochelatase plays an important physiological role as the metalation represents the penultimate reaction step in the prokaryotic coproporphyrin-dependent heme biosynthetic pathway, yielding coproheme (ferric coproporphyrin III). By following the metal titration with resonance Raman spectroscopy and x-ray crystallography, we prove that upon metalation the saddling distortion becomes predominant both in the crystal and in solution. This is a consequence of the readjustment of hydrogen bond interactions of the propionates with the protein scaffold during the enzymatic catalysis. Once the propionates have established the interactions typical of the coproheme complex, the distortion slowly decreases, to reach the almost planar final product.


Assuntos
Coproporfirinas , Ferro , Coproporfirinas/metabolismo , Ferro/metabolismo , Ferroquelatase/química , Ferroquelatase/metabolismo , Propionatos/química , Catálise
4.
Tohoku J Exp Med ; 261(2): 117-122, 2023 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-37495523

RESUMO

Erythropoietic protoporphyria (EPP) is a very rare disease with an estimated prevalence of 1 in 200,000 individuals. Decreased ferrochelatase activity causes the accumulation of protoporphyrin in the body, and light exposure results in the generation of active oxygen, causing photosensitivity. Liver damage has the greatest influence on the prognosis, and liver transplantation is the only treatment option for patients with decompensated liver cirrhosis. We report a case of living-donor liver transplantation for decompensated liver cirrhosis associated with EPP. The patient was a 52-year-old male who led a normal life except for mild photosensitivity. When the patient was 37-year-old, hepatic dysfunction was noticed. At 48-year-old, high erythrocyte protoporphyrin levels, skin biopsy, and genetic tests resulted in a diagnosis of EPP. The patient underwent living- donor liver transplantation because of decompensated liver cirrhosis. In the operating room and intensive care unit, a special light-shielding film was applied to all light sources to block light with harmful wavelengths during treatment. Due to the need for special measures, a lecture on patients with EPP was given before surgery to deepen understanding among all medical professionals involved in the treatment. As a result, no adverse events occurred during the perioperative period, and the patient was discharged on the 46th post-operative day. Currently, the transplanted liver is functioning extremely well, and the patient is alive 3 years post-transplant. Herein, we describe a case of living donor liver transplantation for EPP with a brief literature review.


Assuntos
Hepatopatias , Transplante de Fígado , Protoporfiria Eritropoética , Masculino , Humanos , Pessoa de Meia-Idade , Adulto , Protoporfiria Eritropoética/cirurgia , Protoporfiria Eritropoética/complicações , Protoporfiria Eritropoética/genética , Transplante de Fígado/efeitos adversos , Doadores Vivos , Protoporfirinas , Ferroquelatase/genética , Ferroquelatase/metabolismo , Hepatopatias/complicações , Cirrose Hepática/complicações , Cirrose Hepática/cirurgia
5.
New Phytol ; 239(2): 624-638, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37161708

RESUMO

During photoperiodic growth, the light-dependent nature of chlorophyll synthesis in angiosperms necessitates robust control of the production of 5-aminolevulinic acid (ALA), the rate-limiting step in the initial stage of tetrapyrrole biosynthesis (TBS). We are interested in dissecting the post-translational control of this process, which suppresses ALA synthesis for chlorophyll synthesis in dark-grown plants. Using biochemical approaches for analysis of Arabidopsis wild-type (WT) and mutant lines as well as complementation lines, we show that the heme-synthesizing ferrochelatase 2 (FC2) interacts with protochlorophyllide oxidoreductase and the regulator FLU which both promote the feedback-controlled suppression of ALA synthesis by inactivation of glutamyl-tRNA reductase, thus preventing excessive accumulation of potentially deleterious tetrapyrrole intermediates. Thereby, FC2 stabilizes POR by physical interaction. When the interaction between FC2 and POR is perturbed, suppression of ALA synthesis is attenuated and photoreactive protochlorophyllide accumulates. FC2 is anchored in the thylakoid membrane via its membrane-spanning CAB (chlorophyll-a-binding) domain. FC2 is one of the two isoforms of ferrochelatase catalyzing the last step of heme synthesis. Although FC2 belongs to the heme-synthesizing branch of TBS, its interaction with POR potentiates the effects of the GluTR-inactivation complex on the chlorophyll-synthesizing branch and ensures reciprocal control of chlorophyll and heme synthesis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ácido Aminolevulínico/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Clorofila/metabolismo , Ferroquelatase/genética , Ferroquelatase/metabolismo , Heme/metabolismo , Protoclorifilida/metabolismo , Tetrapirróis/metabolismo
6.
J Mol Graph Model ; 122: 108490, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37121168

RESUMO

Filarial infections are among the world's most disturbing diseases caused by 3 major parasitic worms; Onchocerca volvulus, Wuchereria bancrofti, and Brugia malayi, affecting more than 500 million people worldwide. Currently used drugs for mass drug administration (MDA) have been met with several challenges including the development of complications in individuals with filaria co-infections and parasitic drug resistance. The filarial endosymbiont, Wolbachia, has emerged as an attractive therapeutic target for filariasis elimination, due to the dependence of the filaria on this endosymbiont for survival. Here, we target an important enzyme in the Wolbachia heme biosynthetic pathway (ferrochelatase), using high-throughput virtual screening and molecular dynamics with MM-PBSA calculations. We identified four drug candidates; Nilotinib, Ledipasvir, 3-benzhydryloxy-8-methyl-8-azabicyclo[3.2.1]octane, and 2-(4-Amino-piperidin-1-yl)-ethanol as potential small molecules inhibitors as they could compete with the enzyme's natural substrate (Protoporphyrin IX) for active pocket binding. This prevents the worm from receiving the heme molecule from Wolbachia for their growth and survival, resulting in their death. This study which involved targeting enzymes in biosynthetic pathways of the parasitic worms' endosymbiont (Wolbachia), has proven to be an alternative therapeutic option leading to the discovery of new drugs, which will help facilitate the elimination of parasitic infections.


Assuntos
Brugia Malayi , Filariose , Wolbachia , Animais , Wolbachia/metabolismo , Ferroquelatase/metabolismo , Ferroquelatase/uso terapêutico , Filariose/tratamento farmacológico , Filariose/parasitologia , Heme/metabolismo
7.
Blood ; 141(24): 2921-2931, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-36898083

RESUMO

Erythropoietic protoporphyria (EPP) is an inherited cutaneous porphyria caused by reduced expression of ferrochelatase, the enzyme that catalyzes the final step in heme biosynthesis. The resultant accumulation of protoporphyrin IX leads to severe, painful cutaneous photosensitivity, as well as potentially life-threatening liver disease in a small percentage of patients. X-linked protoporphyria (XLP) is clinically similar to EPP but results from increased activity of δ-aminolevulinic acid synthase 2, the first step in heme biosynthesis in the bone marrow, and also causes protoporphyrin accumulation. Although historically the management of EPP and XLP (collectively termed protoporphyria) centered around avoidance of sunlight, novel therapies have recently been approved or are in development, which will alter the therapeutic landscape for these conditions. We present 3 patient cases, highlighting key treatment considerations in patients with protoporphyria, including (1) approach to photosensitivity, (2) managing iron deficiency in protoporphyria, and (3) understanding hepatic failure in protoporphyria.


Assuntos
Hepatopatias , Transtornos de Fotossensibilidade , Protoporfiria Eritropoética , Humanos , Protoporfiria Eritropoética/terapia , Protoporfiria Eritropoética/complicações , Ferroquelatase/genética , Ferroquelatase/metabolismo , Transtornos de Fotossensibilidade/etiologia , Transtornos de Fotossensibilidade/terapia , Protoporfirinas , Heme/metabolismo
8.
Protein Sci ; 32(1): e4534, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36479958

RESUMO

Coproporphyrin ferrochelatases (CpfCs) are enzymes catalyzing the penultimate step in the coproporphyrin-dependent (CPD) heme biosynthesis pathway, which is mainly utilized by monoderm bacteria. Ferrochelatases insert ferrous iron into a porphyrin macrocycle and have been studied for many decades, nevertheless many mechanistic questions remain unanswered to date. Especially CpfCs, which are found in the CPD pathway, are currently in the spotlight of research. This pathway was identified in 2015 and revealed that the correct substrate for these ferrochelatases is coproporphyrin III (cpIII) instead of protoporphyrin IX, as believed prior the discovery of the CPD pathway. The chemistry of cpIII, which has four propionates, differs significantly from protoporphyrin IX, which features two propionate and two vinyl groups. These findings let us to thoroughly describe the physiological cpIII-ferrochelatase complex in solution and in the crystal phase. Here, we present the first crystallographic structure of the CpfC from the representative monoderm pathogen Listeria monocytogenes bound to its physiological substrate, cpIII, together with the in-solution data obtained by resonance Raman and UV-vis spectroscopy, for wild-type ferrochelatase and variants, analyzing propionate interactions. The results allow us to evaluate the porphyrin distortion and provide an in-depth characterization of the catalytically-relevant binding mode of cpIII prior to iron insertion. Our findings are discussed in the light of the observed structural restraints and necessities for this porphyrin-enzyme complex to catalyze the iron insertion process. Knowledge about this initial situation is essential for understanding the preconditions for iron insertion in CpfCs and builds the basis for future studies.


Assuntos
Porfirinas , Porfirinas/química , Coproporfirinas/metabolismo , Propionatos , Domínio Catalítico , Ferroquelatase/genética , Ferroquelatase/química , Ferroquelatase/metabolismo , Sítios de Ligação , Ferro/metabolismo
9.
Chem Res Toxicol ; 35(12): 2186-2193, 2022 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-36459538

RESUMO

N-Methyl protoporphyrin IX (NmePPIX) is a derivative of protoporphyrin IX (PPIX) and the lattice of heme. Certain xenobiotics strongly induce NmePPIX production in the liver. The existence of endogenous NmePPIX in untreated animal liver has also been reported. The detailed mechanisms of NmePPIX biosynthesis remain unclear, but cytochrome P450 enzymes are thought to be critical in xenobiotic-induced NmePPIX production. High levels of NmePPIX cause PPIX accumulation because NmePPIX is a potent inhibitor (Ki = 7 nM) of ferrochelatase, the last enzyme in the heme biosynthesis pathway that converts PPIX to heme. NmePPIX is also involved in several other physiological processes, including inhibition of nitric oxide production and promotion of lamin aggregation. Compared to the two well-characterized porphyrins, PPIX and heme, NmePPIX is understudied regarding the mechanism of formation, fate, and physiological functions. This Review summarizes the current understanding of NmePPIX and provides perspectives on areas of future research on NmePPIX.


Assuntos
Porfirinas , Animais , Porfirinas/farmacologia , Protoporfirinas/metabolismo , Ferroquelatase/metabolismo , Heme/metabolismo
10.
Nat Commun ; 13(1): 6238, 2022 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-36266306

RESUMO

5-Aminolevulinic acid-based photodynamic therapy heavily depends on the biological transformation efficiency of 5-aminolevulinic acid to protoporphyrin IX, while the lack of an effective delivery system and imaging navigation are major hurdles in improving the accumulation of protoporphyrin IX and optimizing therapeutic parameters. Herein, we leverage a synthetic biology approach to construct a transdermal theranostic microneedle patch integrated with 5-aminolevulinic acid and catalase co-loaded tumor acidity-responsive copper-doped calcium phosphate nanoparticles for efficient 5-aminolevulinic acid-based photodynamic therapy by maximizing the enrichment of intratumoral protoporphyrin IX. We show that continuous oxygen generation by catalase in vivo reverses tumor hypoxia, enhances protoporphyrin IX accumulation by blocking protoporphyrin IX efflux (downregulating hypoxia-inducible factor-1α and ferrochelatase) and upregulates protoporphyrin IX biosynthesis (providing exogenous 5-aminolevulinic acid and upregulating ALA-synthetase). In vivo fluorescence/photoacoustic duplex imaging can monitor intratumoral oxygen saturation and protoporphyrin IX metabolic kinetics simultaneously. This approach thus facilitates the optimization of therapeutic parameters for different cancers to realize Ca2+/Cu2+-interferences-enhanced repeatable photodynamic therapy, making this theranostic patch promising for clinical practice.


Assuntos
Neoplasias , Fotoquimioterapia , Humanos , Fotoquimioterapia/métodos , Ácido Aminolevulínico/farmacologia , Catalase/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Fármacos Fotossensibilizantes , Ferroquelatase/metabolismo , Biologia Sintética , Cobre/metabolismo , Protoporfirinas/metabolismo , Neoplasias/tratamento farmacológico , Oxigênio/metabolismo , Ligases/metabolismo , Linhagem Celular Tumoral
11.
Oncol Rep ; 48(4)2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36082808

RESUMO

Iron is an essential nutrient that facilitates cell proliferation and growth, and it can contribute to tumor growth. Although iron chelators have shown great potential in preclinical cancer models, they can cause adverse side­effects. The aim of the present study was to determine whether treatment with 5­aminolevurinic acid (5­ALA) has antitumor effects in bladder cancer, by reduction of mitochondrial iron without using an iron chelator, through activation of heme synthesis. T24 and MGH­U3 cells were treated with 5­ALA. Ferrochelatase uses iron to convert protoporphyrin IX into heme, thus additional groups of T24 and MGH­U3 cells were transfected with synthesized ferrochelatase small interfering RNA (siRNA) either to silence ferrochelatase or to provide a negative siRNA control group, and then cell viability, apoptosis, mitochondrial Fe2+, the cell cycle, and ferritin expression were analyzed in all groups and compared. As an in vivo assessment, mice with orthotopic bladder cancer induced using N­butyl­N­(4­hydro­oxybutyl) were treated with 5­ALA. Bladder weight and pathological findings were evaluated, and immunohistochemical analysis was performed for ferritin and proliferating cell nuclear antigen (PCNA). In the cells treated with 5­ALA, proliferation was decreased compared with the controls, and apoptosis was not detected. In addition, the expression of Fe2+ in mitochondria was decreased by 5­ALA, expression of ferritin was also reduced by 5­ALA, and the percentage of cells in the S phase of the cell cycle was significantly increased by 5­ALA. In T24 and MGH­U3 cells with silenced ferrochelatase, the inhibition of cell proliferation, decreased expression of Fe2+ in mitochondria, reduced expression of ferritin, and increased percentage of cells in the S phase by treatment with 5­ALA were weakened. In vivo, no mouse treated with 5­ALA developed muscle­invasive bladder cancer. The expression of ferritin was weaker in mice treated with 5­ALA and that of PCNA was higher than that in mice treated without 5­ALA. It was concluded that 5­ALA inhibited proliferation of bladder cancer cells by activating heme synthesis.


Assuntos
Ferroquelatase , Neoplasias da Bexiga Urinária , Ácido Aminolevulínico/farmacologia , Ácido Aminolevulínico/uso terapêutico , Animais , Proliferação de Células , Ferritinas , Ferroquelatase/genética , Ferroquelatase/metabolismo , Heme/metabolismo , Ferro/metabolismo , Camundongos , Antígeno Nuclear de Célula em Proliferação/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo , RNA Interferente Pequeno , Bexiga Urinária/metabolismo , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/genética
12.
Am J Physiol Lung Cell Mol Physiol ; 323(4): L400-L409, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35943724

RESUMO

This study examines if heme biosynthesis-associated iron metabolism is regulated in pulmonary arteries by endothelin-1 (ET1) potentially through modulating cartilage oligomeric matrix protein (COMP) availability. Our studies in organoid-cultured endothelium-rubbed bovine pulmonary arteries (BPAs) observed COMP depletion by siRNA or hypoxia increases NOX2 and superoxide and depletes mitochondrial SOD2. ET1 also increases superoxide in a manner that potentially impairs mitochondrial heme biosynthesis. In this study, organoid culture of BPA with ET1 (10 nM) increases superoxide in the mitochondrial matrix and extramitochondrial regions associated with COMP depletion, and COMP (0.5 µM) inhibited these superoxide increases. As mitochondrial matrix superoxide could impair heme biosynthesis from protoporphyrin IX (PpIX) by decreasing Fe2+ availability and/or ferrochelatase (FECH), we studied ET1, COMP, and COMP siRNA effects on the expression of FECH, transferrin receptor-1 (TfR1, an indicator of iron availability) and soluble guanylate cyclase (sGC, a key heme-dependent protein), and on measurements of PpIX (HPLC) and heme content. ET1 decreased FECH, heme, and sGC, and increased TfR1 and iron. COMP reversed these effects of ET1, and COMP decreased PpIX and increased heme in the absence of ET1. COMP siRNA increased PpIX detection and TfR1 expression and decreased the expression of FECH and sGC. Nitric oxide (spermine NONOate) relaxation of BPA was inhibited by ET1, and this was attenuated by COMP during exposure to ET1. Thus, COMP depletion by ET1 or siRNA modulates pulmonary artery iron metabolism, which results in loss of heme biosynthesis and heme-dependent cGMP mechanisms.


Assuntos
Artéria Pulmonar , Superóxidos , Animais , Proteína de Matriz Oligomérica de Cartilagem/genética , Bovinos , Endotelina-1/metabolismo , Ferroquelatase/metabolismo , Ferroquelatase/farmacologia , Heme/metabolismo , Ferro/metabolismo , Óxido Nítrico/metabolismo , Artéria Pulmonar/metabolismo , RNA Interferente Pequeno/metabolismo , Receptores da Transferrina/metabolismo , Guanilil Ciclase Solúvel/metabolismo , Superóxidos/metabolismo
13.
Free Radic Biol Med ; 188: 14-23, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35697292

RESUMO

Flavonoids are widely distributed in plants as secondary metabolites and have various biological benefits such as anti-tumor, anti-oxidant, anti-inflammatory and anti-aging. We previously reported that 4,4'-dimethoxychalcone (DMC) suppressed cancer cell proliferation by aggravating oxidative stress and inducing G2/M cell cycle arrest. In the present study, we explored the underlying mechanisms by which DMC inhibited cancer cell growth. Given that ferrochelatase (FECH) is a potential target of DMC identified by thermal proteome profiling (TPP) method, herein, we confirmed that DMC inhibited the enzymatic activity of FECH. Furthermore, we proved that DMC induced Keap1 degradation via ubiquitin-proteasome system, which led to the nuclear translocation of Nrf2 and upregulated Nrf2 targeted gene HMOX1. FECH inhibition and HMOX1 upregulation resulted in iron overload and triggered ferroptosis in cancer cells. Collectively, we revealed that DMC induced ferroptosis by synergistically activating Keap1/Nrf2/HMOX1 pathway and inhibiting FECH. Our findings indicate that FECH contributes to the non-canonical ferroptosis induction, shed light on the mechanisms of DMC inhibiting cancer cell growth, and set an example for studying biological functions of flavonoids.


Assuntos
Ferroptose , Neoplasias , Humanos , Antioxidantes/farmacologia , Ferroquelatase/metabolismo , Flavonoides/farmacologia , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
14.
Sci Rep ; 12(1): 6100, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35414164

RESUMO

Liver damage affects the prognosis of patients with erythropoietic protoporphyria (EPP). However, there is no radical cure for EPP patients with severe liver damage. This study aims to investigate the effectiveness of phlebotomy in patients with severe liver damage. We examined seven patients diagnosed with EPP and liver damage between 2010 and 2020. Of the 7 cases, phlebotomy was performed in 3 cases with severe hepatic disorder, and the improvement effect of hepatic disorder was observed in all cases. In addition, as an additional study, we also investigated the mechanism by which liver damage becomes more severe. Liver biopsy samples were stained with hematoxylin and eosin and immunohistochemistry was used to examine the expression of adenosine triphosphate-binding transporter G2 (ABCG2). Liver biopsies were performed in 3 of 7 patients with EPP. Of these three patients, ABCG2 expression was low in two patients, especially in the protoporphyrin (PP) deposition area. Two patients with reduced ABCG2 expression subsequently developed severe liver damage. However, the causal relationship between the decreased expression of ABCG2 and the exacerbation of liver damage has not been directly proved, and further investigation is required in the future. This study demonstrated the effectiveness of phlebotomy in EPP patients with severe liver damage.


Assuntos
Porfiria Eritropoética , Ferroquelatase/metabolismo , Humanos , Fígado/metabolismo , Flebotomia , Porfiria Eritropoética/metabolismo
15.
Biochem Pharmacol ; 200: 115031, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35390338

RESUMO

5-Aminolevulinic acid (ALA) is an intraoperative molecular probe approved for fluorescence-guided resection (FGR) of high-grade gliomas to achieve maximal safe tumor resection. Although ALA has no fluorescence on its own, it is metabolized in the heme biosynthesis pathway to produce protoporphyrin IX (PpIX) with red fluorescence for tumor detection and photosensitizing activity for photodynamic therapy (PDT). The preferential tumor accumulation of PpIX following ALA administration enables the use of ALA as a prodrug for PpIX FGR and PDT of gliomas. Since intracellular PpIX in tumor cells after ALA treatment is influenced by biological processes including PpIX bioconversion catalyzed by ferrochelatase (FECH) and PpIX efflux by ATP-binding cassette subfamily G member 2 (ABCG2), we determined the activity of FECH and ABCG2 in a panel of human glioma cell lines and correlated with intracellular and extracellular PpIX levels and PDT response. We found that glioma cell lines with ABCG2 activity exhibited the trend of low intracellular PpIX, high extracellular PpIX and low PDT response, whereas no particular correlation was seen with FECH activity. Inhibition of PpIX efflux with ABCG2 inhibitors was more effective in enhancing ALA-PpIX fluorescence and PDT response than blocking PpIX bioconversion with iron chelator deferoxamine. We also showed that a clinically used kinase inhibitor lapatinib could be repurposed for therapeutic enhancement of ALA due to its potent ABCG2 inhibitory activity. Our study reveals ABCG2 as an important biological determinant of PpIX fluorescence in glioma cells and suggests ABCG2 inhibition with lapatinib as a promising therapeutic enhancement approach.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Glioma , Fotoquimioterapia , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Ácido Aminolevulínico/farmacologia , Linhagem Celular Tumoral , Ferroquelatase/metabolismo , Fluorescência , Glioma/tratamento farmacológico , Humanos , Lapatinib/farmacologia , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Fármacos Fotossensibilizantes/farmacologia , Protoporfirinas/farmacologia
16.
Cell Chem Biol ; 29(6): 1010-1023.e14, 2022 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-35090600

RESUMO

Activity of the heme synthesis enzyme ferrochelatase (FECH) is implicated in multiple diseases. In particular, it is a mediator of neovascularization in the eye and thus an appealing therapeutic target for preventing blindness. However, no drug-like direct FECH inhibitors are known. Here, we set out to identify small-molecule inhibitors of FECH as potential therapeutic leads using a high-throughput screening approach to identify potent inhibitors of FECH activity. A structure-activity relationship study of a class of triazolopyrimidinone hits yielded drug-like FECH inhibitors. These compounds inhibit FECH in cells, bind the active site in cocrystal structures, and are antiangiogenic in multiple in vitro assays. One of these promising compounds was antiangiogenic in vivo in a mouse model of choroidal neovascularization. This foundational work may be the basis for new therapeutic agents to combat not only ocular neovascularization but also other diseases characterized by FECH activity.


Assuntos
Inibidores da Angiogênese , Ferroquelatase , Inibidores da Angiogênese/farmacologia , Animais , Ferroquelatase/química , Ferroquelatase/metabolismo , Camundongos , Neovascularização Patológica
17.
Methods Mol Biol ; 2394: 823-835, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35094360

RESUMO

Aminolevulinic acid (ALA) has been clinically used as an intraoperative fluorescence probe for protoporphyrin IX (PpIX) fluorescence-guided tumor resection and a PDT agent for cancer treatment. Although tumor tissues often show increased ALA-PpIX fluorescence compared with normal tissues, which enables the use of ALA for tumor imaging and targeting, weak tumor PpIX fluorescence as well as the heterogeneity in tumor fluorescence severely limits its clinical application. Intracellular PpIX in tumor cells is reduced by two major mechanisms, efflux by ATP-binding cassette (ABC) transporters such as ABCG2 and bioconversion to form heme by ferrochelatase (FECH) in the heme biosynthesis pathway. Targeting these two predominant PpIX-reducing mechanisms for the enhancement of ALA-PpIX have yielded a plethora of promising results and stimulated the clinical exploration of these enhancement strategies. Here we describe our methods of evaluating chemicals for the inhibition of ABCG2 transporter and FECH activity. Our goal is to further encourage research and development of novel ABCG2 and FECH inhibitors and promote a rational use of these inhibitors to optimize ALA-based tumor detection and treatment.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Ácido Aminolevulínico , Inibidores Enzimáticos , Ferroquelatase , Fotoquimioterapia , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Ácido Aminolevulínico/farmacologia , Animais , Linhagem Celular Tumoral , Sinergismo Farmacológico , Inibidores Enzimáticos/farmacologia , Ferroquelatase/antagonistas & inibidores , Ferroquelatase/metabolismo , Fluorescência , Humanos , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Protoporfirinas
18.
FEBS J ; 289(6): 1680-1699, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34719106

RESUMO

Coproporpyhrin III is the substrate of coproporphyrin ferrochelatases (CpfCs). These enzymes catalyse the insertion of ferrous iron into the porphyrin ring. This is the penultimate step within the coproporphyrin-dependent haeme biosynthesis pathway. This pathway was discovered in 2015 and is mainly utilised by monoderm bacteria. Prior to this discovery, monoderm bacteria were believed to utilise the protoporphyrin-dependent pathway, analogously to diderm bacteria, where the substrate for the respective ferrochelatase is protoporphyrin IX, which has two propionate groups at positions 6 and 7 and two vinyl groups at positions 2 and 4. In this work, we describe for the first time the interactions of the four-propionate substrate, coproporphyrin III, and the four-propionate product, iron coproporphyrin III (coproheme), with the CpfC from Listeria monocytogenes and pin down differences with respect to the protoporphyrin IX and haeme b complexes in the wild-type (WT) enzyme. We further created seven LmCpfC variants aiming at altering substrate and product coordination. The WT enzyme and all the variants were comparatively studied by spectroscopic, thermodynamic and kinetic means to investigate in detail the H-bonding interactions, which govern complex stability and substrate specificity. We identified a tyrosine residue (Y124 in LmCpfC), coordinating the propionate at position 2, which is conserved in monoderm CpfCs, to be highly important for binding and stabilisation. Importantly, we also describe a tyrosine-serine-threonine triad, which coordinates the propionate at position 4. The study of the triad variants indicates structural differences between the coproporphyrin III and the coproheme complexes. ENZYME: EC 4.99.1.9.


Assuntos
Coproporfirinas , Ferroquelatase , Sítios de Ligação , Coproporfirinas/química , Ferroquelatase/metabolismo , Hidrogênio/metabolismo , Ferro/metabolismo , Propionatos , Especificidade por Substrato , Tirosina
19.
Biomolecules ; 11(12)2021 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-34944556

RESUMO

This study hypothesizes that bacteria inhabiting shale rock affect the content of the sedimentary cobalt protoporphyrin present in it and can use it as a precursor for heme synthesis. To verify this hypothesis, we conducted qualitative and quantitative comparative analyses of cobalt protoporphyrin as well as heme, and heme iron in shale rock that were (i) inhabited by bacteria in the field, (ii) treated with bacteria in the laboratory, and with (iii) bacterial culture on synthetic cobalt protoporphyrin. Additionally, we examined the above-mentioned samples for the presence of enzymes involved in the heme biosynthesis and uptake as well as hemoproteins. We found depletion of cobalt protoporphyrin and a much higher heme concentration in the shale rock inhabited by bacteria in the field as well as the shale rock treated with bacteria in the laboratory. Similarly, we observed the accumulation of protoporphyrin in bacterial cells grown on synthetic cobalt protoporphyrin. We detected numerous hemoproteins in metaproteome of bacteria inhabited shale rock in the field and in proteomes of bacteria inhabited shale rock and synthetic cobalt protoporhyrin in the laboratory, but none of them had all the enzymes involved in the heme biosynthesis. However, proteins responsible for heme uptake, ferrochelatase and sirohydrochlorin cobaltochelatase/sirohydrochlorin cobalt-lyase were detected in all studied samples.


Assuntos
Bactérias/crescimento & desenvolvimento , Fósseis/microbiologia , Sedimentos Geológicos/microbiologia , Heme/análise , Protoporfirinas/análise , Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Técnicas Bacteriológicas , Meios de Cultura/química , Ferroquelatase/metabolismo , Regulação Bacteriana da Expressão Gênica , Sedimentos Geológicos/química , Heme/biossíntese , Liases/metabolismo , Proteômica , Protoporfirinas/biossíntese
20.
Nucleic Acids Res ; 49(19): 10911-10930, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34581821

RESUMO

CSA and CSB proteins are key players in transcription-coupled nucleotide excision repair (TC-NER) pathway that removes UV-induced DNA lesions from the transcribed strands of expressed genes. Additionally, CS proteins play relevant but still elusive roles in other cellular pathways whose alteration may explain neurodegeneration and progeroid features in Cockayne syndrome (CS). Here we identify a CS-containing chromatin-associated protein complex that modulates rRNA transcription. Besides RNA polymerase I (RNAP1) and specific ribosomal proteins (RPs), the complex includes ferrochelatase (FECH), a well-known mitochondrial enzyme whose deficiency causes erythropoietic protoporphyria (EPP). Impairment of either CSA or FECH functionality leads to reduced RNAP1 occupancy on rDNA promoter that is associated to reduced 47S pre-rRNA transcription. In addition, reduced FECH expression leads to an abnormal accumulation of 18S rRNA that in primary dermal fibroblasts from CS and EPP patients results in opposed rRNA amounts. After cell irradiation with UV light, CSA triggers the dissociation of the CSA-FECH-CSB-RNAP1-RPs complex from the chromatin while it stabilizes its binding to FECH. Besides disclosing a function for FECH within nucleoli, this study sheds light on the still unknown mechanisms through which CSA modulates rRNA transcription.


Assuntos
Síndrome de Cockayne/genética , DNA Helicases/genética , Enzimas Reparadoras do DNA/genética , Ferroquelatase/genética , Proteínas de Ligação a Poli-ADP-Ribose/genética , RNA Polimerase I/genética , RNA Ribossômico/genética , Fatores de Transcrição/genética , Linhagem Celular Transformada , Sobrevivência Celular , Imunoprecipitação da Cromatina , Síndrome de Cockayne/metabolismo , Síndrome de Cockayne/patologia , Dano ao DNA , DNA Helicases/metabolismo , Reparo do DNA/efeitos da radiação , Enzimas Reparadoras do DNA/metabolismo , Ferroquelatase/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Fibroblastos/efeitos da radiação , Regulação da Expressão Gênica , Humanos , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , RNA Polimerase I/metabolismo , RNA Ribossômico/metabolismo , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...